Neural representation of minimal syntactic units
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Background

How and why humans can create and understand an infinite
number of novel sentence remains a linguistic mystery, es-
pecially given the number and diversity of languages. De-
spite the apparent complexity of the problem, Generative lin-
guists claim that the answer can be reduced to a single, simply
defined and simply implemented function, Merge (Chomsky,
1995). Merge takes two syntactic objects (e.g., words) and
joins them, forming a larger syntactic object, called a con-
stituent. Merge operates iteratively, either applying to yet un-
merged items or to the product of previous applications of
Merge, building hierarchical, recursive structures (Chomsky,
2001). Merge is argued to be category-neutral, such that the
derivation of noun phrases (NPs) is identical to the derivation
of verb phrases (VPs), and so on. Little evidence comes from
studies on language processing and brain function. Instead,
studies of neural processing of syntax has focused on large-
scale sentential phenomena, involving several applications of
Merge, and further processing requirements.

Studies implicating Merge indicate that constituents of
different sizes elicit activation in left inferior frontal gyrus
(LIFG) during comprehension (Pallier, Devauchelle, & De-
haene, 2011) and production (Indefrey et al., 2001; Indefrey,
Hellwig, Herzog, Seitz, & Hagoort, 2004). However, direct
evidence for Merge is scarce: Bemis and Pylkkanen (2011)
looked at effects of combining adjectives with nouns to form
NPs, finding significant activation in left anterior temporal lobe
(LATL). However, their design made it difficult to tease apart
contributions of syntactic operations (i.e., Merge) and seman-
tic composition (i.e., how meanings of the words combine).

Zaccarella and Friederici (2015) report that Merge is pro-
cessed in a small cluster within BA44. They use minimal com-
positions (i.e., two-word phrases) and two-word word lists, as
well as pseudo-words to avoid effects of semantic composi-
tion (Bemis & Pylkkénen, 2011; Humphries, Binder, Medler,
& Liebenthal, 2006; Pallier et al., 2011). However, they only
investigated NPs. Here, we attempt to replicate Z&F’s find-
ings across 3 further categories: Verb Phrases (VPs), Adjec-
tive Phrases (APs), and Prepositional Phrases (PPs) (:XPs).
However, our aim is not just to see whether constituent XPs
all engage the same (sub)regions of LIFG, but also to address

whether the processing of each category is identical. That
is, Merge is theoretically not category-specific, so we should
not find category-specific patterns of activation. While we test
Z&F’s claim that Merge is localized in Broca’'s Area, our fo-
cus here is not to expand knowledge of the region, but a finer,
neurological characterization of constituency distinctions and
lexical categories.

Questions:

We ask the following:

1. Is there a pattern of neural activation that characterizes
constituents vs. non-constituents?

2. Is that pattern the same across lexical categories?

We predict that the answer to both is yes, given the robustness

of Merge in the modeling of data from hundreds of languages.

However, we are presupposing that lexical category is relevant

at the neural level. So, we additionally ask:

3. Can we distinguish between lexical categories, indepen-
dent of lexical items?

Taken together, we can show that lexical category, while neu-

rologically real, is not relevant to constituent building.

Method

We employed functional magnetic resonance imaging (fMRI)
analyzed with multi-voxel pattern analysis (MVPA).

Subjects Data was acquired for a single adult female, a stu-
dent at Purdue University. Informed consent was obtained.
All protocols, experiments, and analyses were approved by
the Institutional Review Board at Purdue University.

Stimuli  Six English words were selected for each of six cat-
egories (Table 1). The words were partitioned into two disjoint
sets. These were formed into bigrams, half of which were syn-
tactic constituents and half of which were not (Table 2). The
non-constituent bigrams were obtained by reversing the word
order of the constituent bigrams. Bigrams were always formed
from words selected from the same set.

A rapid event-related design (Just, Cherkassky, Aryal, &
Mitchell, 2010) was employed. There were 16 runs, with each
containing 72 stimulus presentations for a total of 16 x 72 =



Table 1: Words used to construct bigram stimuli.

Category Set A SetB
determiner (D) | both most  the few many  no
verb (V) abandon  buy catch adore carry  choose
intensifier (1) really so too super  quite  very
preposition (P) | about of with among on without
noun (N) apples cars dogs books  chairs flowers
adjective (A) big bright  smelly | loud soft sweat

Table 2: Constituent and non-constituent bigram stimuli.

Category Constituent | non-Constituent
noun DN N D

verb VN NV

adjective IA Al

preposition | P N NP

1152 stimulus presentations. Each stimulus presentation con-
sisted of a bigram presented visually as text for 2 s in a ran-
dom font, with random point size, and random position in the
field of view, synced to the TR trigger. The even numbered
runs (from zero) used bigrams only from set A (‘set’). The
odd numbered runs used bigrams only from set B. For each
run, half of the stimuli were constituents and half were non-
constituents (‘constituency’). One quarter were noun, verb,
adjective, and preposition bigrams respectively (‘category’).
Each run contained a single stimulus presentation for possi-
ble combination of all three first words in the bigram paired
with all three second words, i.e., 2 X 4 X 3 X 3 = 72 stimulus
presentations, randomly presented. TR was 2 s. Each run
comprised 278 TRs (9:16), beginning with four TRs of fixa-
tion, ending with ten TRs of fixation, with a minimum of two
TRs fixation between stimuli. An additional 48 TRs of jitter
fixation were randomly distributed between stimulus presen-
tations. Presentation order and jitter varied randomly by run.
Font, point size, and position in the field of view varied ran-
domly by stimulus presentation.

Data Acquisition Imaging was performed using a 3T
GE scanner with 16 channel brain array to collect whole-
brain volumes via a gradient-echo EPI sequence. Thirty-
five axial slices were acquired with a 3.0mm slice
thickness using a 64x64 acquisition matrix resulting in
3.125mm x3.125mmx3.0mm voxels. The subject was given
no task or instructions except to read the stimuli, as presented,
in their head, but not to vocalize them.

Preprocessing Whole-brain scans were processed using
AFNI to drop the first two TRs of each run, skull-strip each
volume, motion correct, slice-timing correct, and detrend each
run, and align all scans for a given subject to a subject-specific
reference volume. Voxels within a run were z-scored. Since
each brain volume has very high dimension, 143,360 voxels,
voxels were eliminated by computing a per-voxel Fisher score

on the dataset and keeping the 1,024 highest-scoring voxels.’
The Fisher score of a voxel v for a classification task with
C classes where each class ¢ has n,. examples was computed
as
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where u., and cg,v are the per-class per-voxel means and
variances and u. was the per-class mean for the entire brain
volume. Voxel selection varied by analysis, since the classes
differed, but was performed on the entire dataset containing
both the training and test set for each analysis.

Analysis A two-layer perceptron with the same number of
hidden units as voxels was used to classify the selected vox-
els. Rectified linear units were used as the activation func-
tion for the first layer, 50% dropout was employed at the in-
put to each layer, and classification was performed with log
soft-max and a negative log likelihood class criterion. A sin-
gle TR for each stimulus, 3 TRs after stimulus onset, was
used to train and test classifiers, to compensate for the hemo-
dynamic response function (HRF). Three types of classifiers
were trained.
word Twelve 1-out-of-3 word classifiers (chance 33%) were
trained, one for each of the six categories (determiner, verb,
intensifier, preposition, noun, and adjective) for each set
(A and B). (E.g., abandon vs. buy vs. catch.) Thus there
were 1122 — 144 samples for the determiner, verb, intensi-
fier, preposition, and adjective, classifiers, while there were
3 % % = 432 samples for the noun classifier. Eight-fold
leave-one-run-out cross-validation was performed, training
on data from 7 of the 8 runs, testing on the eighth, cy-
cling among all eight runs as test set. Thus the noun clas-
sifiers were trained on 2432 = 378 samples and tested

on 4%2 = 54 samples, while the classifiers for other cate-

gories were trained on 2X]#* = 126 samples and tested on
134 = 18 samples.

category Two 1-out-of-4 category classifiers (noun vs. verb
vs. adjective vs. preposition; chance 25%) were trained,
one trained on set A and tested on set B, the other vice
versa. TRs corresponding to all 1152 stimuli were used,
half for training and half for test.

constituency Eight binary constituency classifiers (con-
stituent vs. non-constituent; chance 50%) were trained.
Half were trained on set A and tested on set B; half vice
versa. For each half, classifiers were trained; each one
trained on samples from three categories and tested on
samples of the fourth. (E.g., 1 of the 8 classifiers was
trained on noun, verb, and adjective samples from set A

but tested on preposition samples from set B.) Thus each

TAn alternate analysis with only the 128 highest-scoring voxels
yielded similar results.
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Figure 1: Accuracies of word classifiers (top), category clas-
sifiers (middle), and constituency classifiers (bottom). Each
classifier in the above has p < 0.02.

classifier was trained on 221152 — 432 samples and tested
on 1122 — 144 samples.
Results

Classifier accuracies are shown in Figure 1. All classifiers de-
termine their target with statistical significance (p < 0.02), ex-
cept for the set A noun and set B preposition constituency
classifiers, p < 0.001.

e The accuracies of the word classifiers show that the identity
of the lexical items is manifest in brain activity.

e The accuracies of the category classifiers show that lexical
category information is manifest in brain activity indepen-
dent of the lexical items, since the classifiers were tested
on different words than they were trained on.

e The accuracies of the constituency classifiers show that
constituency is manifest in brain activity independent of the
lexical items and the lexical categories, since the classifiers
were tested on different lexical items of different lexical cat-
egories than they were trained on.

Interpretation

The results confirm our hypotheses, suggesting that the
derivation of complex syntactic behavior can be reduced to
a simple concatenative operation, Merge. By using machine-
learning technigues, we do not assume that the neural imple-
mentation of Merge is itself simple (e.g., the function is located
in BA44; Zaccarella & Friederici, 2015). To our knowledge, we

are the first to do so w.r.t. characterizing Merge. Machine-
learning techniques allow us access to fine-grained linguis-
tic distinctions that may otherwise be undetectable (Allen,
Pereira, Botvinick, & Goldberg, 2012), while much of neu-
rolinguistics is concerned with coarse-grained linguistic effects
(e.g., active vs. passive sentences; see Poeppel & Embick,
2005; Poeppel, 2012).
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